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Generalizing the Petr-Douglas-Neumann
Theorem on n-gons

Stephen B. Gray

1. INTRODUCTION: THE PDN-THEOREM. A popular topic in plane Euclidean
geometry is the construction of similar figures on each side of a polygon, and the prop-
erties of the new polygon so formed. This subject, still active, has been investigated for
over a century. Merriell [18] surveys the field, mentioning constructions using similar
triangles as far back as 1870. Probably the best known such theorem is “Napoleon’s
theorem,” dating to 1825 or earlier, in which the polygons as well as the constructed
figures are triangles. This famous result has had innumerable generalizations, some of
which are discussed and carried further here.

One of the most surprising such extensions involves successive levels or “stages”
of constructions on n-gons. One concise statement of this theorem is Neumann’s [19],
which, somewhat modified, states: If isosceles triangles with apex angles 2kπ/n are
erected on the sides of an arbitrary n-gon A0, and if this process is repeated with the
n-gon formed by the free apices of the triangles, but with a different value of k, and
so on until all values 1 ≤ k ≤ n − 2 have been used (in arbitrary order), then a regular
n-gon An−2 is formed whose centroid coincides with the centroid of A0.

Centroid invariance is the origin of the phrase “concentric polygons” [18], some-
times used to describe this area of geometry. This field is part of what can be called
linear geometry, because all constructed points are linear functions of the vertices of
the initial polygon. Of course, linearity encourages proofs using matrices and other
linear algebra methods.

The only flexibility in this theorem is choosing the order in which the values of k
are used. There are (n − 1)! such permutations, all leading to the same final point, the
centroid of A0. This stands in contrast to the new theorem, introduced in Section 2,
that has n − 1 free geometric variables.

Karel Petr of Prague was the first to publish this theorem, which he did in 1908 [23].
His name is sometimes associated with it [21], but his paper received less attention than
two others, by Douglas in 1940 [8, p. 112] and Neumann in 1941 [19, p. 236]. They
each independently rediscovered it, as I also did in 1961. Their papers were followed
in the next two years by several more: in [9], Douglas introduces cyclic (circulant) ma-
trices [6], showing that their inherent commutation implies that the construction stages
commute, which can readily be proved geometrically. In [1], Baker provides another
proof, avoiding Neumann’s symmetrical components. In the same issue of the same
journal, Neumann published a further simplification [20]. An article by Fisher, Ruoff,
and Shiletto [12, p. 329] contains a short algebraic proof, whose background is also
developed in the same article. In two papers [4], [5], Chang provides two proofs using
circulant matrices. All these proofs use complex numbers and roots of unity, as does
mine. Bogomolny [3] provides an interactive facility for dynamically exploring this
theorem, and gives a concise proof. In related work, Wong [25] discusses polygons,
inverses, and circulant matrices in general.

I will call this result the PDN-theorem, for Petr, Douglas, and Neumann, in an
attempt to eliminate considerable name confusion. This theorem has been called by at
least four names: “Douglas’s theorem” [16], the “Douglas-Neumann theorem” [26],

210 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 110



Integre Technical Publishing Co., Inc. American Mathematical Monthly 110:3 November 8, 2002 2:19 p.m. gray.tex page 211

the “Napoleon-Douglas-Neumann theorem” [5], and “Petr’s theorem” [21]. To add
to the confusion, there are at least two other much simpler results often called the
“Douglas-Neumann theorem” (for one, see [12, p. 330]). There are also at least two
unrelated results called “Douglas’s theorem” (one is referred to in [17]). Using the
suggested new name would reduce ambiguity, preserve recognizability, and properly
credit Petr, whose contribution is usually overlooked.

The PDN-theorem is one of the few Euclidean propositions that have a discrete vari-
able n in their definitions. Several such theorems are given in [18, thm. 8] and in [15]
that emphasize ordinary induction on integers having geometric meaning. The PDN-
theorem has never been proved using induction, perhaps because as it proceeds from
n-gons to (n + 1)-gons, all the triangles used change discontinuously. As n increases,
the number of constructed triangles goes up as O(n2), so for even moderate values of
n (greater than ten, say) a full illustration of the theorem is almost impossible to un-
derstand visually. It is not surprising that no synthetic proof has ever been presented,
nor will one be given here.

All proof methods used to date for the PDN-theorem strictly depend on the similar-
ity of all triangles used in any one stage of the construction. This restriction appears to
be intrinsic to the problem, which is perhaps why the theorem has never been general-
ized beyond the similarity constraint. This may seem surprising, in that the theorem is
almost one hundred years old and still receives attention [21]. In fact it has been called
“remarkable” [16, p. 38] and “beautiful” [26, p. 471] and certainly possesses inher-
ent interest. But I have found only one previous generalization, that of Wong [26]. He
presents conditions that make the final n-gon a proper (n/m)-gon traced m times, and
gives related results. His development, like most of the others, uses complex variables
but no matrix theory.

2. THE NEW RESULT. The present paper takes a different point of view, general-
izing the PDN-theorem while using a proof method that is more elementary (but not
necessarily simpler) than existing proofs. The new result also involves n − 1 stages of
triangle construction that finally converge to a single point. However here the triangles
are not specified numerically by angle. Instead, they originate from the combination of
an arbitrary “model n-gon” Z and a separate common vertex point Y , as shown on the
left in Figures 1 and 2. There are a total of n(n − 1)/2 distinct model triangles, each
used twice, with n of them used at each stage of the construction. In general, none of
the model triangles is similar to any of the others. This is why previous techniques used
for the PDN-theorem, such as roots of unity [8, p. 108], symmetric components [19],
and circulant matrices [6], do not apply here.

As might be expected, certain properties of PDN-theorem constructions do not carry
over to the present generalization. First, centroids are not preserved in general, so this
theorem does not create concentric figures. Second, the stages of construction do not
commute. Third and most important, the n-gon resulting from the last of the n − 2
stages is not regular, but instead is geometrically similar to the model polygon Z.
In a doubly specialized case, Z is a regular n-gon and Y is its centroid, so that the
model triangles used in any one stage are similar and isosceles, and the final polygon
is regular. This is exactly the PDN-theorem.

The nature of the present generalization derives largely from defining the construc-
tion objects in a “model,” shown on the left in Figures 1 and 2. (Figure 2 shows the
same model twice, with different connecting lines. The model figure is separate from
the theorem itself, seen on the right in the figures. This separation is necessary for both
visual and conceptual clarity. The model has the property that the separate common
vertex Y can be located anywhere in the plane of Z. (N.B. If Y lies on a side of Z, one
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of the model’s constituent triangles degenerates to a line segment; if Y coincides with
a vertex of Z, two of the model’s triangles degenerate to different line segments. In
both cases the theorem holds.) The model figure has two restrictions. First, no vertices
of the n-gon Z itself may coincide. Second, the model triangles must fit together to
form an n-gon, having no gaps or steps; see Figure 1 (left) and Figure 2 (left, top). It
can be shown either algebraically or geometrically that this criterion is necessary and
sufficient to ensure that the constructions are “noninvertible,” defined as follows.

Suppose T is a specific one-stage triangle construction that can be applied to an
arbitrary n-gon A to yield a derived n-gon B. Then we can write B = TA. If T is
invertible, by definition its inverse is constructible, so that for an arbitrary B we can
always construct A = T−1B. Invertible constructions are of no interest here, because
they cannot create the specialized n-gons that are the chief subject of this paper.

The proofs of the present theorem given in Sections 5, 6, and 7 implicitly demon-
strate that the constructions are noninvertible, so we do not need to prove this sepa-
rately.

3. SPECIAL CASE: n = 3. Figure 1 (left) shows the model 3-gon Z and its con-
stituent triangles. The 3-gon’s vertices are labelled Z0, Z1, and Z2. The common ver-
tex Y , placed inside Z for visual clarity, is part of the three model triangles Y Z0 Z1,
Y Z1 Z2, and Y Z2 Z0. Figure 1 (right) illustrates the theorem itself, which starts with an
arbitrary original 3-gon A0 = A00 A01 A02, in general not similar to Z. Triangle A0 is
pictured with a dashed line. In a first stage of construction (t = 1, t denoting the cur-
rent stage), triangles directly similar (similar without mirroring) to the model triangles
are constructed on the sides of A0, with vertices placed as follows: Z1 and Z0 are
mounted on A00 and A01, respectively; Z2 and Z1 are put on A01 and A02; and Z0 and
Z2 are on A02 and A00. The three new vertices, each corresponding to the model ver-
tex Y , form a 3-gon A1 = A10 A11 A12, which is shown in thick lines. The construction
triangles themselves are represented by thin solid lines. The result is that A1 is similar
to Z, a fact to be proved later. On the sides of A1 we do a second (t = 2) construction
using the same model triangles again but in the opposite sense: Z0 Z1 is put on A11 A12,
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Z 0
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Figure 1. The case n = 3: model (left); theorem (right).
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Z1 Z2 on A12 A10, and Z2 Z0 on A10 A11. Assuming for the moment that A1 is similar to
Z, it follows that the three new vertices coincide in one point; this is given the general
vertex label A2b, b = 0, 1, 2, emphasizing that it is a (degenerate) triangle. This point
is not related in a simple way to the centroid of A0, even if Y is the centroid of Z. To
clarify Figure 1 further, one model triangle and the two triangles similar to it in the
theorem construction are shaded.

The theorem, to be stated formally in Section 7, is true whether Y is inside, outside,
or on the triangle Z. It also holds if any of the vertices of A0 is moved through its
opposite side so that the three triangles constructed first lie on the inward side of A0;
this continuity unifies the inward and outward cases.

The above generalization for n = 3 is not new, being shown in Figure 12 of [13]
and in Theorem 3.1 of Rigby in slightly different forms. However it has quite a few
immediate implications that are not usually associated with it; some of these follow.

1. When Z is equilateral and Y is its centroid, A1 is equilateral. This is just
Napoleon’s theorem and has been proven in many different ways. In Exer-
cise 22a of [28] it is proved using a series of 120◦ rotations. (Rotations and
dilations about a common center, or spiral similarities, are powerful techniques
for some theorems like the present one; see [11], [28] and [29].) An excel-
lent survey paper [27] gives many implications and converses of Napoleon’s
theorem.

2. In Figure 1 (left) if Y is the circumcenter of Z0 Z1 Z2, certain angle relationships
hold, namely, � A12 A10 A11 = � A00 A10 A01/2, � A11 A12 A10 = � A02 A12 A00/2,
and � A10 A11 A12 = � A01 A11 A02/2. This is Exercise 22b in [28] and follows
easily from the present theorem.

3. Let T = A1 A2 A3 be an arbitrary triangle. Construct points P1, P2, and P3 exter-
nal to T, such that � P1 A2 A3 = � P1 A3 A2 = 15◦; � P2 A3 A1 = 45◦; � P2 A1 A3 =
30◦; � P3 A2 A1 = 45◦; � P3 A1 A2 = 30◦. Then P1 P2 P3 is a 90◦-45◦-90◦ triangle.
(Notation is from the original [2].)

4. Given a triangle ABC, erect equilateral triangles BAP and ACQ outwardly on
sides AB and CA. Let R be the midpoint of side BC, and let G be the centroid of
triangle ACQ. Then triangle PRG is 30◦-90◦-60◦ [14].

5. If squares are constructed on the sides of a triangle towards the triangle’s exte-
rior, then the segment joining two of the centers is perpendicular and congruent
to the segment joining the third center to the vertex opposite it (see [11, thm. 2]).

6. Let BZC and CXA be nondegenerate triangles (with vertices corresponding in the
order given) constructed both towards the exterior or both towards the interior of
arbitrary triangle ABC. Let � BZC = � CXA = β. Let M be the point in the plane
that is equidistant from A and B and that is located so that � BMA = 2β. Then
MZ = MX (see [11, thm. 5]).

7. Let the model triangle in Figure 1 be made degenerate so that all four points lie
on a line. The obvious identity

(YZ0/YZ1)(YZ1/YZ2)(YZ2/YZ0) = 1

relates the lengths of segments on this line. These lengths are proportional to cor-
responding segments in the theorem figure, since both are limiting cases of sim-
ilar triangles. In the theorem figure the previous expression becomes the nonob-
vious identity

(A10 A01/A01 A00)(A11 A02/A11 A01)(A12 A00/A12 A02) = 1.
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Drawing the theorem figure for this case, one can see that it is an illustration
of the theorem of Menelaus, which is therefore a special case of the present
proposition. The statement of this theorem on page 28 of [22] reads: “A line
cuts the sides BC, CA, and AB of a triangle ABC in the points L , M , and N re-
spectively. In terms of signed segments, (BL : LC)(CM : MA)(AN : NB) = −1.”
(This −1 is compatible with the +1 in the previous identity because the line
segments were arbitrarily assigned different directions.)

4. SPECIAL CASE: n = 4. Here we use n − 1 = 3 stages of construction to create
the final point, just as in the PDN-theorem. They are all derived from the same model
4-gon Z, illustrated twice on the left side of Figure 2. In both pictures of the model,
points Z = Z0 Z1 Z2 Z3 are located identically, as is the common vertex Y . The model is
drawn twice to clarify the use of different triangles at different stages of construction.

Both models together define six triangles with Y as common vertex. These six are
each used twice, for a total of 12 = n(n − 1) triangles. The t = 1 construction stage
uses the four model triangles whose second subscript minus the first equals one mod-
ulo 4 (for example, Z0 Z1Y in the top model). For the t = 2 stage the two triangles
whose subscript difference is two modulo 4 (for example, Z1 Z3Y in the bottom model)
are used, twice each. In the third stage the second subscript minus the first is three
modulo 4, for example Z3 Z2Y , implying that the triangles from the top model are
used again.

The subscript difference is called the vertex spacing parameter q(t). The model
triangles used in stage t of the construction are Zk Zk+q(t)Y , where 0 ≤ k ≤ n − 1,
1 ≤ q(t) ≤ n − 1, and subscripts are taken modulo n. This relation will be further
defined in Section 7. In all cases of the theorem in the present paper, q(t) = t for
any n. Although it is not strictly necessary, we distinguish between q(t) and t itself
to emphasize their different meanings, and because I am working on variations of the
present theorem in which q(t) �= t .
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Figure 2. The case n = 4: models (left); theorem (right).
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In Figure 2, the shading indicates correspondence between the models and the
theorem figure. In the t = 1 stage of the construction, model triangles Z0 Z1Y ,
Z1 Z2Y , Z2 Z3Y , and Z3 Z0Y (q = 1) are used first, mounted on the sides of the
original 4-gon A0 = A00 A01 A02 A03, shown with dashed lines. This creates a new
4-gon A1 = A10 A11 A12 A13, displayed with dotted lines. As before, the first triangle is
placed so that Z0 is on A01 and Z1 is on A00; for the second, Z1 is on A02 and Z2 is on
A01, and so on. For the t = 2 stage, triangles Z2 Z0Y and Z3 Z1Y (q = 2) are mounted
on A1 in the positions indicated. Vertices Z2 and Z0 are placed on A10 and A11 and
on A13 and A12, respectively, giving A20 and A22; Z3 and Z1 are placed on A10 and
A13 and on A11 and A12, respectively, producing A23 and A21. The resulting polygon
A2 = A20 A21 A22 A23, drawn with thick solid lines, is similar to Z = Z3 Z0 Z1 Z2. In the
final t = 3 stage, the model triangles corresponding to q = 3 are used, pointing inward
on the sides of A2 and yielding a single point. This point is labelled A3b to emphasize
that it is a degenerate quadrilateral. An explicit rule for placing triangles on the sides
of n-gons is defined by the general construction matrices discussed in Section 7.

For any given n, the model figure is fully determined by n − 1 mutually independent
triangles; that is, each of these can have arbitrary angles and side length ratios unrelated
to those of the others. Figure 2 (left) shows that the rest of the n(n − 1)/2 model
triangles are then completely defined. The present general theorem can produce many
specialized results because it has 2n − 2 independent real variables, whereas the PDN-
theorem has no free variables for a given starting n-gon. A few resulting specializations
follow.

The case when Z is a square and Y is its centroid is the long-known Van Aubel
theorem (see Exercise 24b in [28]). It has been generalized several times [7], but the
following corollary appears to be new: in the notation of Figure 2, if Z is square,
then whether Y is its centroid or not, A2 is square and the diagonals of A1 are equal
and perpendicular. Another apparently new generalization of Van Aubel’s theorem is
obtained by placing Y at the intersection of the diagonals of the model. Another choice
is to put Y at one of the vertices Zk ; a simpler figure and theorem result. If two adjacent
vertices of A0 coincide, several propositions about triangles appear.

5. MATRIX PROOF FOR n = 3. Referring to Figure 1, we wish to construct a tri-
angle directly similar to YZ0 Z1 on side A01 A00 of the theorem figure, among two other
like constructions. Vertex Z0 is to go on A01, Z1 on A00, and the common vertex Y
will define the position of A10. Treating all vertices as complex numbers, and not-
ing that two triangles are similar if two corresponding sides have equal ratios, A10 is
determined by

A10 − A00

A01 − A00
= Y − Z1

Z0 − Z1
. (1)

Next, we define for any Zu and Zv , assuming u �= v and Zu �= Zv ,

Zuv = Zu − Y

Zu − Zv

. (2)

Two easily established identities will be useful later for purposes of simplification:

Zuv + Zvu = 1, (3)

and

Zwu Zuv + Zwv Zvu = Zwu Zwv. (4)
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Combining (1) and (2) gives

A10 = A00 Z01 + A01 Z10, (5)

and similarly for the other vertices, always taking subscripts modulo 3 (in the general
case, modulo n). (It is helpful to remember that in equations such as (5), the sec-
ond subscript on A and the second subscript on Z indicate the vertices that coincide.
In other words, Z1 is placed on A00 and Z0 on A01, as in the figures.) Generalizing
from (5), all the new vertices from the t = 1 stage of construction can be written in
terms of polygon vertex vectors and construction matrices as

 A10

A11

A12


 =


 Z01 Z10 0

0 Z12 Z21

Z02 0 Z20





 A00

A01

A02


 , (6)

or identifying a polygon with its column vector of vertices, A1 = M31A0, where M31 is
the square matrix in (6). (The general notation is Mnt .) The t = 2 construction is seen
from Figure 1 to be 

 A20

A21

A22


 =


 Z02 Z20 0

0 Z10 Z01

Z12 0 Z21





 A10

A11

A12


 (7)

or A2 = M32A1 = M32M31A0. The two successive stages are

A2 = Q32A0, (8)

where Q32 = M32M31. (In the general case the corresponding matrix that incorporates
all stages of construction is Qn,n−1.) Calculating M32M31 with the help of definition (2)
and identities (3) and (4) gives

Q32 =

 Z01 Z02 Z12 Z10 Z20 Z21

Z01 Z02 Z12 Z10 Z20 Z21

Z01 Z02 Z12 Z10 Z20 Z21


 . (9)

All rows are identical, so the vertices of A2 coincide, and are given the general vertex
label A2b. From (8) and (9) we obtain

A2b = A20 = A21 = A22 = Z01 Z02 A00 + Z12 Z10 A01 + Z20 Z21 A02. (10)

It is easy to verify that the sum of each row in M31, M32, and Q32 is 1, as required
for the matrix representation to be origin-independent. It is also easy to check that
matrices of the forms (6), (7), and (9) are noninvertible, meaning that the successive
polygons so constructed are increasingly specialized.

6. MATRIX PROOF FOR n = 4. The rule for constructing each stage of triangles
is further illustrated by the n = 4 case, where we simply exhibit the three con-
struction matrices. Analogously to the situation for n = 3, we have A3 = M43A2 =
M43M42A1 = M43M42M41A0, where the At are now 4-by-1 column matrices, and

M41 =



Z01 Z10 0 0
0 Z12 Z21 0
0 0 Z23 Z32

Z03 0 0 Z30


 , M42 =




Z02 Z20 0 0
0 Z13 Z31 0
0 0 Z20 Z02

Z13 0 0 Z31


 ,
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M43 =



Z03 Z30 0 0
0 Z10 Z01 0
0 0 Z21 Z12

Z23 0 0 Z32


 . (11)

The relevant products of the matrices in (11) are found to be Q41 = M41,

Q42 = M42M41 =



Z01 Z02 Z10 Z12 Z20 Z21 0
0 Z12 Z13 Z21 Z23 Z31 Z32

Z02 Z03 0 Z23 Z20 Z32 Z30

Z03 Z01 Z13 Z10 0 Z30 Z31


 , (12)

and

Q43 = M43M42M41 =



Z01 Z02 Z03 Z12 Z13 Z10 Z23 Z20 Z21 Z30 Z31 Z32

Z01 Z02 Z03 Z12 Z13 Z10 Z23 Z20 Z21 Z30 Z31 Z32

Z01 Z02 Z03 Z12 Z13 Z10 Z23 Z20 Z21 Z30 Z31 Z32

Z01 Z02 Z03 Z12 Z13 Z10 Z23 Z20 Z21 Z30 Z31 Z32


 .

(13)

The full construction is represented by

A3 = Q43A0. (14)

The final matrix has a clear pattern, whose general expression is given in Section 7.
All its rows are identical, so the final vertices of A3 coincide, and the general label A3b

is used. It is again straightforward to verify that each row sums to 1. The final points
are given directly by (15) in an expression corresponding to (10): for 0 ≤ b ≤ n − 1,

A3b = Z01 Z02 Z03 A00 + Z12 Z13 Z10 A01 + Z23 Z20 Z21 A02 + Z30 Z31 Z32 A03. (15)

I have purely geometric proofs of the theorem for the n = 3 and n = 4 cases, but
the methods used do not readily extend to higher values of n.

7. THE GENERAL CASE

Notation. As earlier, the original n-gon is A0, and the constructed ones are At , where t
(1 ≤ t ≤ n − 1) signifies the construction stage. Vertices of n-gon At are denoted At j ,
with 0 ≤ j ≤ n − 1. The model polygon and its common vertex are Z and Y , re-
spectively. All subscripts (except n) are taken modulo n. Boldface indicates polygons,
vectors, and matrices. In construction stage t , the matrix Mnt is applied to polygon
At−1 to create polygon At . In other words,

At = Mnt At−1, 1 ≤ t ≤ n − 1. (16)

Polygon properties. No numbered vertices of Z may coincide, because of (2); Z is
otherwise general. The point Y can be anywhere in the plane of Z without restriction.
The original n-gon A0 is completely general; the theorem is still true if two or more of
its vertices coincide, producing a degenerate n-gon. (If A0 is reduced to two distinct
vertices, n-gon An−2 is similar to Z; if all vertices of A0 coincide, An−2 reduces to one
point, which is “similar” to Z with zero size ratio.) For visual clarity only, Z and A0 can
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be thought of as convex, with vertices increasing counterclockwise, and with point Y
inside Z.

For further clarification of this theorem, we provide detailed illustrations and a table
of construction logic for the n = 5 case. We also rewrite the construction matrices for
n = 4 in an enhanced form. This section will also explicitly give the general rules and
proof from which these cases are derived.

Illustrations (n = 5). Figures 3 and 4 show each of the four construction stages. In
these, as well as in Figure 5, the model and theorem sections are independent, so there
is no need to match them in orientation or scale.

Figure 3 (bottom) shows construction stages t = 1 (left) and t = 2 (right). Above
each of these, the corresponding model appears, divided into the triangles used for that
stage. Progressively shaded triangles match in the model and in the theorem construc-
tion. In the stage t = 2 model (top right) the triangles overlap, but the intended shading
is apparent.

A20

A21

A22

A23

A24

A10

A11

A12

A13 A14

A10

A11

A12

A13 A14

A03

A02

A01

A00

A04

Z2

Z3

Z4

Z0

1

Y

Z

Y

Z4

Z3

Z2

Z1

Z0

Figure 3. The case n = 5: model and theorem for stages t = 1 and t = 2.

Figure 4 (bottom) shows the stages t = 3 and t = 4 in the same manner. For each
stage, the associated model is directly above. (Keep in mind that in the four model
images, the Z polygons with their the Y points are congruent, differing only in the
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Y
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Z4

Z3

Z2

Z1
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Figure 4. The case n = 5: model and theorem for stages t = 3 and t = 4.

“triangulation” of Z.) In the bottom right figure, the penultimate n-gon An−2 is similar
to the model, and the final degenerate n-gon is represented by a point with the vertex
label A4b.

Figure 5 illustrates the full theorem, omitting the construction triangles for clarity.
The model Z and common vertex Y are on the left. In the theorem figure the four n-
gons At are shown with different line patterns. Again, A3 is similar to the model, and
the position of A4b within A3 corresponds to the position of Y within Z.

Construction table (n = 5). Table 1 gives the construction rules for this case. A fully
general statement of the rule follows an explanation of the table. Figures 3, 4, and 5
should be referred to along with these rules.

In Table 1, the k = 0 line in the column for t = 1 means that a triangle similar to
model triangle Z0 Z1Y is mounted on vertices A01 and A00 of the original polygon A0,
with Z0 placed on A01 and Z1 placed on A00. The third vertex of the model triangle,
point Y , corresponds to the new vertex A10 of the next-stage polygon A1. Using suc-
cessive lines in the stage 1 columns of Table 1, we continue counterclockwise around
polygons Z and A0, constructing the remaining vertices of A1. The vertex spacing pa-
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A4b

Z2

Z3

Z4

Z0

A30

A31

A32

A33

A34

A20

A21

A22

A23

A24

A10

A11

A12

A13
A14

A03

A02

A01

A00

A04

Z1

Y

Figure 5. The case n = 5: model and theorem, triangles omitted.

rameter q equals 1 for stage 1, meaning that pairs of adjacent vertices of the model
polygon (for example, Z0 and Z1) are used (1 − 0 = q).

Next, we build upon polygon A1 to make A2, as shown in the t = q = 2 column.
According to row k = 0, a triangle directly similar to Z0 Z2Y is mounted on A11 A10,
with Z0 going on A11 and Z2 going on A10, thus defining new vertex A20. Tracing both
Z and A1 counterclockwise, we complete building polygon A2. We construct A3 and
A4 in the same manner, using the rest of Table 1. At each stage, q is incremented by
one. For larger values of n, the table is extended down and to the right according to the
expression for the general case, so that there are n rows and n − 1 stages.

General construction rule. Equation (16) states the general version of the second
row in the table header. The main set of table entries for stage t (1 ≤ t ≤ n − 1),

TABLE 1. Construction procedure for n = 5.

Fig. 3 (left) Fig. 3 (right) Fig. 4 (left) Fig. 4 (right)
A1 = M41A0 A2 = M42A1 A3 = M43A2 A4 = M44A3

k stage t = q = 1 stage t = q = 2 stage t = q = 3 stage t = q = 4

0 Z0 Z1Y A01 A00 A10 Z0 Z2Y A11 A10 A20 Z0 Z3Y A21 A20 A30 Z0 Z4Y A31 A30 A40

1 Z1 Z2Y A02 A01 A11 Z1 Z3Y A12 A11 A21 Z1 Z4Y A22 A21 A31 Z1 Z0Y A32 A31 A41

2 Z2 Z3Y A03 A02 A12 Z2 Z4Y A13 A12 A22 Z2 Z0Y A23 A22 A32 Z2 Z1Y A33 A32 A42

3 Z3 Z4Y A04 A03 A13 Z3 Z0Y A14 A13 A23 Z3 Z1Y A24 A23 A33 Z3 Z2Y A34 A33 A43

4 Z4 Z0Y A00 A04 A14 Z4 Z1Y A10 A14 A24 Z4 Z2Y A20 A24 A34 Z4 Z3Y A30 A34 A44
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skip parameter q, and row k (0 ≤ k ≤ n − 1), are as follows: model triangle vertices
Zk , Zk+q , and Y correspond to theorem triangle vertices At−1,k+1, At−1,k , and Atk ,
respectively. In all cases of the present theorem, q(t) = t , and vertex subscripts are
taken modulo n.

Theorem 1. Starting with an arbitrary plane polygon A0, using triangles from a
model n-gon Z, and constructing successive polygons Ak according to the general
construction rule, polygon An−2 is similar to Z and polygon An−1 is a single point.

Proof. First we explicitly define the form of each of the n − 1 n-by-n construction
matrices, and then prove that their product results in a form similar to (13) in which all
the rows are identical. This shows that the final polygon is one point. The proof of this
is linked with the distribution of zero cells in the intermediate product matrices, so a
statement is made about the latter and is proved as part of the main theorem.

We consider patterns in the partial products Qnt , 0 ≤ t ≤ n − 1. These products
were shown for n = 4 in (12) and (13). We rewrite those here in (17), (18), and (19),
using two simple conventions that simplify the analysis. First, in contrast with (2),
where Zuv is defined only for u �= v, we introduce the quantity Zuu to stand for 1.
Second, we display in brackets certain zero entries in Qnt in order to clarify patterns in
the matrices and simplify certain expressions. Using these conventions, we rewrite the
product matrix Q41 and its successors, at the same time rearranging the terms within
each entry:

Q41 = M41 =



Z00 Z01 Z10 Z11 [Z20 Z21] [Z30 Z31]
[Z01 Z02] Z11 Z12 Z21 Z22 [Z31 Z32]
[Z02 Z03] [Z12 Z13] Z22 Z23 Z32 Z33

Z03 Z00 [Z13 Z10] [Z23 Z20] Z33 Z30


 , (17)

Q42 = M42Q41 = M42M41 =


Z00 Z01 Z02 Z10 Z11 Z12 Z20 Z21 Z22 [Z30 Z31 Z32]
[Z01 Z02 Z03] Z11 Z12 Z13 Z21 Z22 Z23 Z31 Z32 Z33

Z02 Z03 Z00 [Z12 Z13 Z10] Z22 Z23 Z20 Z32 Z33 Z30

Z03 Z00 Z01 Z13 Z10 Z11 [Z23 Z20 Z21] Z33 Z30 Z31


 , (18)

and

Q43 = M43Q42 = M43M42M41 =


Z00 Z01 Z02 Z03 Z10 Z11 Z12 Z13 Z20 Z21 Z22 Z23 Z30 Z31 Z32 Z33

Z01 Z02 Z03 Z00 Z11 Z12 Z13 Z10 Z21 Z22 Z23 Z20 Z31 Z32 Z33 Z30

Z02 Z03 Z00 Z01 Z12 Z13 Z10 Z11 Z22 Z23 Z20 Z21 Z32 Z33 Z30 Z31

Z03 Z00 Z01 Z02 Z13 Z10 Z11 Z12 Z23 Z20 Z21 Z22 Z33 Z30 Z31 Z32


 . (19)

a For t = 1 through n − 1, Qnt has n − t − 1 zeroes in each row and column; this will
be shown true for any n. Each entry in Qnt is the product of t + 1 terms, including
the Zuu = 1 term. Having written out the zero entries in a form resembling the other
entries (and enclosing them in brackets), we observe that a matrix entry is zero if it
contains no Zuu term. Also observe the clear pattern of subscripts as one traverses a
matrix row. Further, as one steps down in any column, the entry loses the term on the
left and gains one on the right; the new term’s second subscript is incremented (modulo
n) with respect to the one immediately above or to the left. These patterns are evident
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only because we introduced the Zuus and the zero entries in brackets; they allow us to
describe with ease the general Q matrices.

Mimicking what we did in (19), we now write a general expression for entries in
the Q matrices. We define

Qnt = Mnt Mn,t−1 · · · Mn1 (20)

for 0 ≤ t ≤ n − 1. The entire construction is represented by Qn,n−1, so that

An−1 = Qn,n−1A0, (21)

which is a general version of (8) and (14). Taking a cue from (17) through (19), we
can write (with proof to follow)

(Qnt)i j = Z ji Z j,i+1 · · · Z j,i+t =
i+t∏
s=i

Z js [t + 1 terms] (22)

for 0 ≤ i, j ≤ n − 1, taking subscripts modulo n. An integral part of the proposi-
tion (22) is that (Qnt)i j is defined to be zero unless the product contains a Z j j (= 1)

term. From (22) it is clear that such a term is present if and only if j has one of the
values (modulo n) i, i + 1, i + 2, . . . , i + t .

It may be helpful to give a few examples of products Qnt that can be checked
against (17)–(19). For n = 4, t = 1, i = 3, j = 2, (22) gives (Q41)32 = Z23 Z20,
which contains no Z j j term and therefore is 0 according to the preceding defini-
tion of (Qnt)i j , agreeing with (17). For n = 4, t = 3, and any i and j , (22) gives
(Q43)i j = Z ji Z j,i+1 Z j,i+2 Z j,i+3, so (Q43)i j contains a complete set of second sub-
scripts modulo n, and therefore contains a Z j j term and has the same value for any i .
In other words, all rows are equal.

Before proceeding with the proof of (22), we need a formula for entries of the
construction matrices Mnt . These are given as follows (don’t forget that in Zkl the
subscripts k and l are to be taken modulo n):

(Mnt)i j =



Zi,t+ j = Zi,t+i if j = i,
Z j+t−1,i = Zt+i,i if j = i + 1,

0 otherwise.
(23)

This formula can be checked against the entries in (11).
To begin the proof by induction, we first show that (22) holds for t = 1: in this

case (22) asserts that (Qn1)i j = (Mn1)i j = Z ji Z j,i+1 (two terms), where the first equal-
ity comes from (20) and the second from (22). This must agree with the basic defini-
tion of (Mn1)i j from (23). For j = i , (22) gives (Qn1)i i = Zii Zi,i+1, agreeing with (23)
since Zii = 1. For j = i + 1, (22) is (Qn1)i,i+1 = Zi+1,i Zi+1,i+1 = Zi+1,i , again agree-
ing with (23).

Next, we do the main inductive step in the proof, showing that (22) still holds when
t increments to t + 1. According to (20),

Qn,t+1 = Mn,t+1Qnt . (24)

Using the standard matrix multiplication formula, (24) gives

(
Qn,t+1

)
i j

=
n−1∑
k=0

(
Mn,t+1

)
ik

(
Qnt

)
k j

. (25)
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Each row of matrix Mnl has only two nonzero terms (Mnl)ik , those with k = i and
k = i + 1, so (25) becomes(

Qn,t+1

)
i j

= (Mn,t+1)i i (Qnt )i j + (Mn,t+1)i,i+1(Qnt)i+1, j .

Using (23) for the terms of matrices Mnl and (22) for the Qnm , we have

(Qn,t+1)i j = Zi,i+t+1(Z ji Z j,i+1 · · · Z j,i+t) + Zi+t+1,i (Z j,i+1 Z j,i+2 · · · Z j,i+t+1),

where each expression in parentheses has t + 1 terms. Gathering terms, we have

(Qn,t+1)i j = (Z j,i+1 · · · Z j,i+t)(Zi,i+t+1 Z j,i + Zi+t+1,i Z j,i+t+1). (26)

Using (4) with u = i , v = i + t + 1, and w = j simplifies the second set of terms,
reducing (26) to

(Qn,t+1)i j = Z ji Z j,i+1 · · · Z j,i+t Z j,i+t+1 (27)

for 0 ≤ i, j ≤ n − 1, with t + 2 terms including a term of the type Z j j if there is one.
This is the same as (22), with t + 1 replacing t , so the formula for Qnt extends from t
to t + 1. Then by induction it holds for all t , and since n was not assigned a specific
value, it also holds for all n.

When t = n − 2, (27) becomes

(Qn,n−1)i j = Z ji Z j,i+1 · · · Z j,i+n−1 [n terms]. (28)

All values of the second subscript (modulo n) are present in (28), ensuring that the
product is not a function of the row index i . (Changing i just permutes the terms.)
Therefore all rows are equal.

Finally, (27) shows that when t increases by one, the range of j for which a Z j j

turns up in (22) also increases by one. As a result, there is one more nonzero entry in
each row and column of Qn,t+1 than occurs in Qnt , as is required for the consistency
of (22). This completes the inductive part of the proof.

Thus far we have proved that all rows of the final product matrix Qn,n−1 are equal,
so the last construction stage results in a single point. The only remaining task is to
prove that the penultimate stage delivers a polygon similar to the model. To do this,
we express the final degenerate polygon An−1 in terms of the preceding one, An−2. The
basic matrix relation is (16), in which we set t = n − 1. The entries in Mn,n−1 come
from (23). We also need the definitions of the Zuv given in (2). The two nonzero terms
of Mn,n−1An−2 are then

An−1,i = (Zi − Y )An−2,i − (Zn−1+i − Y )An−2,i+1

Zi − Zn−1+i
. (29)

This equation represents one of the triangle constructions used in the last stage. To
establish similarity between the model Z and the polygon An−2, we apply the same
construction to part of Z itself, substituting Zn−1+i for An−2,i and Zi for An−2,i+1.
Putting these Z vertices into (29) and simplifying gives

(Zi − Y )Zn−1+i − (Zn−1+i − Y )Zi

Zi − Zn−1+i
= Y. (30)
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Equations (29) and (30) demonstrate that the same linear construction that takes ver-
tices An−2,i and An−2,i+1 into An−1,i , also takes vertices Zn−1+i and Zi into Y . There-
fore the triangles An−2,i An−2,i+1 An−1,i and Zn−1+i Zi Y are similar. Since the subscript
i is general, any given triangle in An−2 is similar to a corresponding one in Z. Since Y
is common to all model triangles, and since we already showed that all constructions
on An−2 lead to the common point An−1,b, it follows that An−2 is similar to Z. For an
example, let n = 5 and i = 3. Then the similarity applies to triangles A33 A34 A4b (with
b = 3) and Z2 Z3Y . Figure 4 (right) confirms this. The proof is now complete.

Although not part of the theorem itself, we can write an explicit formula for the
ultimate common point in terms of the coefficients Z jk and the initial polygon A0.
We adapt the general matrix multiplication formula to (21), where the vertex vectors
consist only of column 0 and the second subscript refers to the row entry of the vector.
Then

An−1,b =
n−1∑
k=0

(Qn,n−1)bk
A0k . (31)

For the Q terms we use the right part of (22) with t = n − 1:

(Qn,n−1)bk =
b+n−1∏

s=b

Zks =
n−1∏
s=0

Zks . (32)

The second equality obtains because in the first product, the s subscript ranges through
all n values and subscripts are taken modulo n. It follows that any integer can be added
to both limits of the second product without changing the result. (Changing both limits
by the same amount just permutes the terms.) Combining (31) and (32), we have

An−1,b =
n−1∑
k=0

(
A0k

n−1∏
s=0

Zks

)
. (33)

Every product in this sum will contain a Zkk = 1 term. With this in mind, we remark
that (33) is a generalization of (10) and (15), which are written without the Zkk = 1
term. From (33) and definition (2) we see that the final point An−1,b is linear in the
vertices of the original n-gon A0 but highly nonlinear in all parts of the model.

8. THE PDN-THEOREM. We now verify that the new theorem reduces to the PDN-
theorem in the situation where the model is regular. The main theorem shows that the
final n-gon is similar to the model, which in this case makes it regular, regardless of
the location of Y . In the discussion of equations (29) and (30), we proved that each
constituent triangle of An−2 is similar to a corresponding one of Z. This immediately
implies that, if Y is at the centroid of Z, then the final point An−1,b is at the centroid
of An−2.

More generally, we now show that in the case of the PDN-theorem, the centroid is
invariant with respect to any stage of construction. Since the scale and angular offset
of the model are not important, we can let Y = 0 and express the model’s j th vertex
(0 ≤ j ≤ n − 1) in the form

Z j = e2 jπ i/n.
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In tandem with (2) this gives

Z jk = 1/(1 − e2( j−k)π i/n). (34)

Now define St to be the sum of the vertices of n-gon t . We wish to find St in terms
of St−1. First, writing (16) as a matrix-vector product much like (31), we get

Atk =
n−1∑
j=0

(Mnt)k j At−1, j .

Then

St =
n−1∑
k=0

n−1∑
j=0

(Mnt )k j At−1, j =
n−1∑
j=0

At−1, j

n−1∑
k=0

(Mnt )k j , (35)

where the order of summation has been reversed in the right-hand expression. Note that
the second sum is over one column of Mnt , which like any row has only two nonzero
terms. For a fixed j these terms are i = j and i = j − 1, modulo n. The nonzero
terms in (23) are then (Mnt ) j j = Z j,t+ j and (Mnt ) j−1, j = Zt+ j−1, j−1. Now we use the
Z values for the regular model from (34) to evaluate the second sum in (35):

n−1∑
k=0

(Mnt )k j = 1

(1 − e2tπ i/n)
+ 1

(1 − e−2tπ i/n)
= 1.

Then

St =
n−1∑
j=0

(At−1) j = St−1,

so that the vertex sum of stage t equals that of stage t − 1. Therefore centroids are
invariant from stage to stage.

This discussion has not covered commutation of the construction stages, another im-
portant property of the PDN-theorem. Commutation can be proved straightforwardly
by taking the product of matrices representing two different stages of construction.
Call them Mnt and Mnu . We compute Ptu = Mnt Mnu and Put = MnuMnt using the
matrix definition of (23) and the standard multiplication formula. Substituting the spe-
cial values for Z jk according to (34), we find that Ptu=Put . Therefore any two stages
commute. Now any order of construction can be obtained by starting with the specific
product order of (20) with t = n − 1, and swapping adjacent terms until the desired
permutation is reached. The worst-case number of swaps, which would be required to
reverse the order of all n − 1 construction steps, is (n − 1)(n − 2)/2.

9. CONCLUDING REMARKS. In the preceding development, actual properties of
complex quantities are needed only in the PDN case, where it is convenient to define
regular model polygons in terms of exponentials. In the general case we needed only
to know that lengths and angles can be represented by complex numbers, as in (1),
and that those complex numbers can be manipulated by algebraic means. Also, the
only matrix algebra tools we needed were multiplication, and some care in manipu-
lating subscripts. This makes the proof relatively elementary, although not particularly
simple.
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A worthwhile goal would be a synthetic proof of the new theorem, despite the pres-
ence of the variable n. So far as I know there are no truly synthetic proofs of theorems
involving general n-gons. There are a few that come somewhat close, where induction
on n can be used [15]. It appears that inductive methods are not useful here. Synthetic
proofs are sometimes better at affording insights and showing directions for general-
ization, compared with proofs using complex numbers and matrices.

Having conjectured the present theorem, I performed visual checks on it using Ge-
ometer’s Sketchpad for n ≤ 7. It certainly seemed to be true, but a synthetic proof for
n > 4 appeared infeasible. I then went to matrix methods, although I regard them as
foreign to the spirit of geometry (if frequently indispensable). Seeing a pattern in the
matrix products, I verified them using Mathematica for n ≤ 7 before constructing the
general proof. Using modern mathematical tools made the development much easier,
especially in the conjecture stage.

At the other end of the spectrum, as n takes on large values, polygons A0 and Z
can both be made to approach closed, smooth curves. The theorem is meaningful for
any finite value of n. It provides a construction using triangles that takes the arbitrary
curve A0 into An−2, a curve that is “similar” to Z but not related in shape to A0. Related
questions involving smooth curves can easily be posed. One challenge would be to
apply continuous-variable analysis to define and prove the limiting case. Another is
to see under what conditions, if any, the intermediate polygons remain bounded as
n → ∞.

Another goal would be to establish a three-dimensional counterpart to the new the-
orem. Obvious questions are what plane(s) to place the triangles in and what an out-
ward or inward construction should mean (perhaps away from or toward the polygon’s
centroid). There are a few theorems applying to polygons in R

3 [10], but there is no
assurance that one involving triangle constructions on n-gons is possible (or impossi-
ble).

A relatively short-term task, now under way, is to relax conditions on the construc-
tion, increasing the new theorem’s generality still more. In addition, I have found vari-
ations of the present theorem in which the vertex spacings follow different rules.
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